外加剂Ï nkRFbbs.3c3t.com©öJÞ@½¡Ã× | 扩展度Ï nkRFbbs.3c3t.com©öJÞ@½¡Ã× (mm)Ï nkRFbbs.3c3t.com©öJÞ@½¡Ã× | 减水率Ï nkRFbbs.3c3t.com©öJÞ@½¡Ã× (%)Ï nkRFbbs.3c3t.com©öJÞ@½¡Ã× | 抗压强度(MPa)/抗压强度比(%)Ï nkRFbbs.3c3t.com©öJÞ@½¡Ã× | ||||
种类Ï nkRFbbs.3c3t.com©öJÞ@½¡Ã× | 掺量(%C)Ï nkRFbbs.3c3t.com©öJÞ@½¡Ã× | 1dÏ nkRFbbs.3c3t.com©öJÞ@½¡Ã× | 3dÏ nkRFbbs.3c3t.com©öJÞ@½¡Ã× | 7dÏ nkRFbbs.3c3t.com©öJÞ@½¡Ã× | 28dÏ nkRFbbs.3c3t.com©öJÞ@½¡Ã× | ||
/Ï nkRFbbs.3c3t.com©öJÞ@½¡Ã× | 0Ï nkRFbbs.3c3t.com©öJÞ@½¡Ã× | 125Ï nkRFbbs.3c3t.com©öJÞ@½¡Ã× | 0Ï nkRFbbs.3c3t.com©öJÞ@½¡Ã× | 12.5/100Ï nkRFbbs.3c3t.com©öJÞ@½¡Ã× | 38.3/100Ï nkRFbbs.3c3t.com©öJÞ@½¡Ã× | 45.6/100Ï nkRFbbs.3c3t.com©öJÞ@½¡Ã× | 62.8/100Ï nkRFbbs.3c3t.com©öJÞ@½¡Ã× |
MGÏ nkRFbbs.3c3t.com©öJÞ@½¡Ã× | 0.15Ï nkRFbbs.3c3t.com©öJÞ@½¡Ã× | 127Ï nkRFbbs.3c3t.com©öJÞ@½¡Ã× | 4.2Ï nkRFbbs.3c3t.com©öJÞ@½¡Ã× | 13.8/110Ï nkRFbbs.3c3t.com©öJÞ@½¡Ã× | 39.8/104Ï nkRFbbs.3c3t.com©öJÞ@½¡Ã× | 48.8/107Ï nkRFbbs.3c3t.com©öJÞ@½¡Ã× | 63.2/101Ï nkRFbbs.3c3t.com©öJÞ@½¡Ã× |
MNÏ nkRFbbs.3c3t.com©öJÞ@½¡Ã× | 0.15Ï nkRFbbs.3c3t.com©öJÞ@½¡Ã× | 126Ï nkRFbbs.3c3t.com©öJÞ@½¡Ã× | 8.7Ï nkRFbbs.3c3t.com©öJÞ@½¡Ã× | 12.6/101Ï nkRFbbs.3c3t.com©öJÞ@½¡Ã× | 35.8/93Ï nkRFbbs.3c3t.com©öJÞ@½¡Ã× | 46.9/103Ï nkRFbbs.3c3t.com©öJÞ@½¡Ã× | 61.3/98Ï nkRFbbs.3c3t.com©öJÞ@½¡Ã× |
MGÏ nkRFbbs.3c3t.com©öJÞ@½¡Ã× | 0.25Ï nkRFbbs.3c3t.com©öJÞ@½¡Ã× | 131Ï nkRFbbs.3c3t.com©öJÞ@½¡Ã× | 8.7Ï nkRFbbs.3c3t.com©öJÞ@½¡Ã× | 15.9/127Ï nkRFbbs.3c3t.com©öJÞ@½¡Ã× | 38.4/100Ï nkRFbbs.3c3t.com©öJÞ@½¡Ã× | 50.9/112Ï nkRFbbs.3c3t.com©öJÞ@½¡Ã× | 65.3/104Ï nkRFbbs.3c3t.com©öJÞ@½¡Ã× |
MNÏ nkRFbbs.3c3t.com©öJÞ@½¡Ã× | 0.25Ï nkRFbbs.3c3t.com©öJÞ@½¡Ã× | 130Ï nkRFbbs.3c3t.com©öJÞ@½¡Ã× | 13.9Ï nkRFbbs.3c3t.com©öJÞ@½¡Ã× | 107/86Ï nkRFbbs.3c3t.com©öJÞ@½¡Ã× | 21.5/56Ï nkRFbbs.3c3t.com©öJÞ@½¡Ã× | 45.7/100Ï nkRFbbs.3c3t.com©öJÞ@½¡Ã× | 53.3/85Ï nkRFbbs.3c3t.com©öJÞ@½¡Ã× |
水泥中碱的存在有助于加速水泥中铝酸盐相的溶出,导致水泥颗粒对减水剂分子吸附量增大,因而减水剂掺量一定时,塑化效果下降,混凝土坍落度损失加快[7,8]。Ï
nkRFbbs.3c3t.com©öJÞ@½¡Ã×
Ï
nkRFbbs.3c3t.com©öJÞ@½¡Ã×
Ï
nkRFbbs.3c3t.com©öJÞ@½¡Ã×
Ï
nkRFbbs.3c3t.com©öJÞ@½¡Ã× 2.2.4 混合材 Ï
nkRFbbs.3c3t.com©öJÞ@½¡Ã×
目前我国80%以上的水泥在粉磨时都掺加了一定量的混合材,如火山灰、粉煤灰、矿渣粉、煤矸石、石灰石和窑灰等。由于混合材的品种、性质和掺量等不同,减水剂的作用效果存在较大差异。Ï
nkRFbbs.3c3t.com©öJÞ@½¡Ã×
试验表明,减水剂对以矿渣作为混合材的水泥的塑化效果优于纯硅酸盐水泥,而对以火山灰、煤矸石和窑灰作为混合材的水泥的塑化效果较差。可以认为,减水剂对掺不同混合材水泥的饱和掺量有较大差异。Ï
nkRFbbs.3c3t.com©öJÞ@½¡Ã×
2.2.5 细度Ï
nkRFbbs.3c3t.com©öJÞ@½¡Ã×
图 3是针对嘉新水泥熟料与二水石膏的配料进行粉磨后的试验结果。可见,随着水泥细度增加,减水剂塑化效果下降。Ï
nkRFbbs.3c3t.com©öJÞ@½¡Ã×
水泥颗粒对减水剂分子具有比较强的吸附性,在掺加减水剂的水泥浆体中,水泥颗粒越细,意味着其比表面积越大,则对减水剂分子的吸附量越大。所以,减水剂在相同掺量情况下,对于细度较大的水泥,其塑化效果要差一些。水泥新标准实施后,某些厂家为达到早期强度的要求,过分提高水泥的细度,对于这类水泥,为了达到较好的塑化效果,必然要增加减水剂的掺量。Ï
nkRFbbs.3c3t.com©öJÞ@½¡Ã×
Ï
nkRFbbs.3c3t.com©öJÞ@½¡Ã×
Ï
nkRFbbs.3c3t.com©öJÞ@½¡Ã×
Ï
nkRFbbs.3c3t.com©öJÞ@½¡Ã×
Ï
nkRFbbs.3c3t.com©öJÞ@½¡Ã×
图5 S95矿渣粉对掺高效减水剂浆体
Ï
nkRFbbs.3c3t.com©öJÞ@½¡Ã×
Ï
nkRFbbs.3c3t.com©öJÞ@½¡Ã×
Ï
nkRFbbs.3c3t.com©öJÞ@½¡Ã×
混凝土掺合料对减水型外加剂作用效果的影响规律与水泥中的混合材基本相似,主要与其矿物成分、溶出离子的性质、表面亲水程度、细度、颗粒形状和颗粒大小分布等因素有关,但有时尚需考虑更多因素,主要原因在于掺合料生产方为提高水化活性可能在其中掺加了一定量的化学激发组分(如硫酸盐和碱等)。Ï
nkRFbbs.3c3t.com©öJÞ@½¡Ã×
3. 结论Ï
nkRFbbs.3c3t.com©öJÞ@½¡Ã×
1) 对混凝土外加剂与水泥/掺合料进行定义时,首先应将因外加剂、水泥和掺合料不符合有关标准规范所带来的影响排除在外。Ï
nkRFbbs.3c3t.com©öJÞ@½¡Ã×
2) 商品混凝土由于必须使用减水型外加剂,通常还掺加粉煤灰、矿渣粉、沸石粉和硅灰等掺合料,且为改善某些方面的性能、满足实际工程的特殊需要,更有可能同时掺加其它种类的外加剂,所以在分析适应性问题时,要进行全方位考虑。Ï
nkRFbbs.3c3t.com©öJÞ@½¡Ã×
3) 减水型外加剂对商品混凝土流动性和流动性保持性的影响受外加剂、水泥和掺合料等方面多因素的影响,只有通过试验并结合理论分析,才能找到根本原因。Ï
nkRFbbs.3c3t.com©öJÞ@½¡Ã×